27 research outputs found

    Charging Effects and Quantum Crossover in Granular Superconductors

    Full text link
    The effects of the charging energy in the superconducting transition of granular materials or Josephson junction arrays is investigated using a pseudospin one model. Within a mean-field renormalization-group approach, we obtain the phase diagram as a function of temperature and charging energy. In contrast to early treatments, we find no sign of a reentrant transition in agreement with more recent studies. A crossover line is identified in the non-superconducting side of the phase diagram and along which we expect to observe anomalies in the transport and thermodynamic properties. We also study a charge ordering phase, which can appear for large nearest neighbor Coulomb interaction, and show that it leads to first-order transitions at low temperatures. We argue that, in the presence of charge ordering, a non monotonic behavior with decreasing temperature is possible with a maximum in the resistance just before entering the superconducting phase.Comment: 15 pages plus 4 fig. appended, Revtex, INPE/LAS-00

    Mean Field Theory of Josephson Junction Arrays with Charge Frustration

    Full text link
    Using the path integral approach, we provide an explicit derivation of the equation for the phase boundary for quantum Josephson junction arrays with offset charges and non-diagonal capacitance matrix. For the model with nearest neighbor capacitance matrix and uniform offset charge q/2e=1/2q/2e=1/2, we determine, in the low critical temperature expansion, the most relevant contributions to the equation for the phase boundary. We explicitly construct the charge distributions on the lattice corresponding to the lowest energies. We find a reentrant behavior even with a short ranged interaction. A merit of the path integral approach is that it allows to provide an elegant derivation of the Ginzburg-Landau free energy for a general model with charge frustration and non-diagonal capacitance matrix. The partition function factorizes as a product of a topological term, depending only on a set of integers, and a non-topological one, which is explicitly evaluated.Comment: LaTex, 24 pages, 8 figure

    Parity Effects in Stacked Nanoscopic Quantum Rings

    Full text link
    The ground state and the dielectric response of stacked quantum rings are investigated in the presence of an applied magnetic field along the ring axis. For odd number NN of rings and an electric field perpendicular to the axis, a linear Stark effect occurs at distinct values of the magnetic field. At those fields energy levels cross in the absence of electric field. For even values of NN a quadratic Stark effect is expected in all cases, but the induced electric polarization is discontinuous at those special magnetic fields. Experimental consequences for related nanostructures are discussed.Comment: typos corrected, to appear Phys. Rev. B (Rapid Communication) 15 Au

    Doping Controlled Superconductor-Insulator Transition in Bi2Sr2-xLaxCaCu2O8+delta

    Full text link
    We show that the doping-controlled superconductor-insulator transition (SIT) in a high critical temperature cuprate system (Bi2Sr2-xLaxCaCu2O8+delta) exhibits a fundamentally different behavior than is expected from conventional SIT. At the critical doping, the sheet resistance seems to diverge in the zero temperature limit. Above the critical doping, the transport is universally scaled by a two-component conductance model. Below, it continuously evolves from weakly to strongly insulating behavior. The two-component conductance model suggests that a collective electronic phase separation mechanism may be responsible for this unconventional SIT behavior.Comment: 21 pages, 5 figures, abstract changed. Introduction and conclusion expanded. Slight changes in the main text. Accepted to PR

    Quantum critical point and scaling in a layered array of ultrasmall Josephson junctions

    Full text link
    We have studied a quantum Hamiltonian that models an array of ultrasmall Josephson junctions with short range Josephson couplings, EJE_J, and charging energies, ECE_C, due to the small capacitance of the junctions. We derive a new effective quantum spherical model for the array Hamiltonian. As an application we start by approximating the capacitance matrix by its self-capacitive limit and in the presence of an external uniform background of charges, qxq_x. In this limit we obtain the zero-temperature superconductor-insulator phase diagram, EJcrit(EC,qx)E_J^{\rm crit}(E_C,q_x), that improves upon previous theoretical results that used a mean field theory approximation. Next we obtain a closed-form expression for the conductivity of a square array, and derive a universal scaling relation valid about the zero--temperature quantum critical point. In the latter regime the energy scale is determined by temperature and we establish universal scaling forms for the frequency dependence of the conductivity.Comment: 18 pages, four Postscript figures, REVTEX style, Physical Review B 1999. We have added one important reference to this version of the pape

    Spectral Flow, Magnus Force and Mutual Friction via the Geometric Optics Limit of Andreev Reflection

    Full text link
    The notion of spectral flow has given new insight into the motion of vortices in superfluids and superconductors. For a BCS superconductor the spectrum of low energy vortex core states is largely determined by the geometric optics limit of Andreev reflection. We use this to follow the evolution of the states when a stationary vortex is immersed in a transport supercurrent. If the core spectrum were continuous, spectral flow would convert the momentum flowing into the core via the Magnus effect into unbound quasiparticles --- thus allowing the vortex to remain stationary without a pinning potential or other sink for the inflowing momentum. The discrete nature of the states, however, leads to Bloch oscillations which thwart the spectral flow. The momentum can escape only via relaxation processes. Taking these into account permits a physically transparent derivation of the mutual friction coefficients.Comment: Plain TeX, 19 pages, 5 encapsulated postscript figure

    Granular Electronic Systems

    Full text link
    A granular metal is an array of metallic nano-particles imbedded into an insulating matrix. Tuning the intergranular coupling strength a granular system can be transformed into either a good metal or an insulator and, in case of superconducting particles, experience superconductor-insulator transition. The ease of adjusting electronic properties of granular metals makes them most suitable for fundamental studies of disordered solids and assures them a fundamental role for nanotechnological applications. This Review discusses recent important theoretical advances in the study of granular metals, emphasizing on the interplay of disorder, quantum effects, fluctuations and effects of confinement in formation of electronic transport and thermodynamic properties of granular materials.Comment: 51 pages, 23 figures, submitted to Reviews of Modern Physic

    Josephson Junctions and AdS/CFT Networks

    Get PDF
    We propose a new holographic model of Josephson junctions (and networks thereof) based on designer multi-gravity, namely multi-(super)gravity theories on products of distinct asymptotically AdS spacetimes coupled by mixed boundary conditions. We present a simple model of a Josephson junction (JJ) that exhibits the well-known current-phase sine relation of JJs. In one-dimensional chains of holographic superconductors we find that the Cooper-pair condensates are described by a discretized Schrodinger-type equation. Such non-integrable equations, which have been studied extensively in the past in condensed matter and optics applications, are known to exhibit complex behavior that includes periodic and quasiperiodic solutions, chaotic dynamics, soliton and kink solutions. In our setup these solutions translate to holographic configurations of strongly-coupled superconductors in networks with weak site-to-site interactions that exhibit interesting patterns of modulated superconductivity. In a continuum limit our equations reduce to generalizations of the Gross-Pitaevskii equation. We comment on the many possible extensions and applications of this new approach.Comment: 39 pages, 11 figures; v2 clarified the nature and computation of the Josephson current in subsec. 3.2 and specific properties of the two-site system, analogous minor modifications in subsec. 4.4 and added a new subsec. 4.5 with a new fig.
    corecore